
Smart Spot Instances for the Supercloud

Qin Jia Zhiming Shen Weijia Song Robbert van Renesse Hakim Weatherspoon

Cornell University

Abstract

In this paper, we explore the use of live VM migration to take ad-
vantage of spot markets such as provided by Amazon and Google.
These markets provide an exciting low cost alternative to regular
VM instances, but the threats of price spikes and premature ter-
mination severely limit their usability. Migration can address these
threats: spot market instances facing price hikes or termination can
migrate to other instance types, including regular ones. Reliability
can be further improved by replication. In this paper we investi-
gate various design options and present some preliminary results
of experiments with dynamic programming techniques, both using
simulation and using a realistic deployment. We find that in unsta-
ble markets we can achieve significant savings at low overhead and
while maintaining good reliability.

1. Introduction

The Supercloud is an Openstack cloud that does not run on a ded-
icated cluster, but instead runs on resources allocated in various
other clouds, including Amazon EC2, Microsoft Azure, Google
Compute Engine, and private clouds (Jia et al. 2015). The Super-
cloud goes beyond federated clouds in that it supports management
operations fully, including migration between availability zones
and even autonomous and heterogeneous clouds. The Supercloud
implementation leverages nested virtualization and Software De-
fined Networking, and achieves good performance and low over-
head.

In this paper we explore the use of Supercloud migration in or-
der to make the Spot Instances or Preemptible Instances as provided
by Amazon and Google more attractive. For example, Amazon EC2
provides a Spot Market that allows users to take advantage of un-
derutilized compute resources. Spot Instances perform the same as
On-Demand Instances and are often much cheaper. But Spot In-
stances present risks, as described below.

First, Spot Instance prices can change rapidly—sometimes ev-
ery 5 minutes, and occasionally the price can significantly exceed
the price of an On-Demand Instance. Figure 1a shows the price his-
tory of the m3.xlarge instance type from March 25 to March 27,
2015 in different availability zones in the Amazon Virginia region.1

The prices change (seemingly) independently in different availabil-
ity zones. In each availability zone, the price can either change
rapidly and in unpredictable ways (us-east-1b) or be quite sta-
ble (us-east-1d). It has been shown that the price changes have
no correlation to the historical price (Mazzucco and Dumas 2011).

1 Our Amazon account does not grant access to the us-east-1a zone.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact

the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)

869-0481.

CrossCloud’16 April 18, 2016, London, United Kingdom

Copyright c© 2016 held by owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-4294-0/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2904111.2904114

 0

 0.5

 1

 1.5

 2

03/25 03/26 03/27

P
ri
c
e
 (

$
)

Time (UTC)

us-east-1b
us-east-1c

us-east-1d
us-east-1e

(a) Same type in different zones

0.03

0.06

0.13

0.25

0.50

1.00

2.00

03/25 03/26 03/27

S
p

o
t/

R
e

g
u

la
r

P
ri
c
e

Time (UTC)

m3.large
m3.xlarge

c3.large
c3.xlarge

(b) Different types in same zone (log-scale in y-axis)

Figure 1. Spot Instance Price History

Second, unlike traditional On-Demand Instances, Spot In-
stances can be terminated at any time by EC2 (in which case Ama-
zon does not bill for the interrupted hour). To use Spot Instances,
users specify a maximum bid price when starting the instances.
Spot Instances are charged hourly at the beginning of an instance
hour. The Spot Instances will be terminated automatically when the
Spot price exceeds the maximum bid. In this case, Amazon sends
out a termination notice and gives a two-minute grace period, dur-
ing which an emergency recovery operation can be performed.

This unpredictable termination limits how Spot Instances can
be used effectively. When using Spot Instances, there is a trade-off
between cost and availability. Users need to design their application
carefully to be prepared for early termination. Setting a higher
maximum bid lowers the probability of early termination, but this
may lead to higher cost. It is difficult to examine this trade-off,
which involves factors such as price expectation and the cost of
tolerating interrupts.

Within the context of the Supercloud, we have developed Smart
Spot Instances: Instead of making a trade-off between cost and
availability, Smart Spot Instances can achieve low cost and high
availability at the same time with the support of user-level live
migration. User VMs run as nested or second layer VMs (sVMs),
while the Amazon Spot Instances form the first layer VMs (fVMs).
Nested virtualization allows sVMs to be migrated according to a
scheduling policy.

Smart Spot Instances can increase availability compared to or-
dinary Spot Instances. Users set a high maximum bid, which can
be as high as the On-Demand prices. The Supercloud monitors the
Spot price and live migrates sVMs to other, possibly cheaper fVMs
– either just another Spot Instance type, or even Spot Instances in
another availability zone, another region, or another cloud. In the

worst case, the sVMs can be live migrated to regular On-Demand
Instances that are always available, so the user only needs to pay
as much as the On-Demand price. When the price approaches the
maximum bid in the middle of an instance hour, the Supercloud
migrates the sVMs to avoid being terminated.

The challenge of the Smart Spot Instance Scheduler is to place
sVMs on fVMs where different types of fVMs will be able to hold
different numbers of sVMs. Complicating matters further, fVM
prices change from time to time. Because of the significant price
difference between fVM types, moving sVMs between types could
result in large cost savings. Thus, the contributions of this paper are
the following.

• We present a scheduler that optimizes placement of groups of
sVMs;

• We show that it addresses the tradeoff between terminating a
Spot Instance versus maintaining high availability;

• We demonstrate benefits of using Smart Spot Instances, both by
evaluating a system deployment and by exploring the solution
space via simulation.

Our previous work (Jia et al. 2015) considered scheduling only a
single instance and was entirely synthetic.

2. Challenges and Opportunities

The Smart Spot Instance Scheduler deals with scheduling multiple
sVMs on different types of fVMs, either Spot Instances or regular
instances. This section discusses challenges in formulating the best
scheduling policy and opportunities that may be attained.

2.1 Price Trends in Different Types of Spot Instance

Figure 1b shows the Spot price variation of different instance types
between March 25 and March 27, 2015 in the us-east-1b avail-
ability zone. For each instance type, the graph shows the ratio be-
tween the Spot price and the regular On-Demand price for that
type. While the Spot price of c3.large and c3.xlarge were rel-
atively stable, instance types m3.large and m3.xlarge had large
price variations. Some spikes in the m3.large Spot price even ex-
ceeded the regular price. The price for m3.xlarge Spot Instances
fluctuated between the regular price and the lowest price. As we
surveyed other time periods and other availability zones, the price
history usually shows a significant difference between instance
types.

2.2 Multiple Resource Allocation

When placing sVMs into fVMs, the Smart Spot Instance Sched-
uler needs to consider the capacity of different resources, includ-
ing number of vCPUs, memory size, network bandwidth, and disk
throughput. In this paper, we will not consider oversubscription,
which means that the scheduler will always guarantee the resources
requested by the user. To implement this, the scheduler stops plac-
ing sVMs into fVMs until sufficient resources free up.

Although this will lead to under-utilization of some resources,
this approach guarantees the quality of service requested by the
sVMs.

2.3 Different Instance Hour Start Times

Spot Instances are charged at the beginning of each instance hour.
If the next instance hour increases in price, then we may need
to migrate sVMs away from the Spot Instances before the next
instance hour begins. In order to finish live migration before the
end of an instance hour, the Smart Spot Instance Scheduler needs
to leave a large enough margin time during which the Supercloud
can allocate a new Spot Instance in a cheaper location and finish

the migration before the start of the next instance hour. During this
margin time, users pay for both Spot Instances.

When making the decision at the end of the instance hour,
some of the instances might continue to run while some instances
are cleared and the sVMs on them are migrated to other types
of instances. The new fVMs start the next instance hour earlier
than the ones that continue to run. A challenge is that a placement
decision needs to be made slightly before any of the fVMs finish
their instance hour, but the ending of fVM instance hours may be
out of sync.

Another challenge is that the placement decision is purely reac-
tive: The scheduler considers only current prices of instance types
in its placement decision. If, on the other hand, we could predict
prices, then the placement decision could be more proactive. How-
ever, studies (Mazzucco and Dumas 2011) and our own observa-
tions (Figure 1) demonstrate that predicting price remains elusive.
As a result, the Smart Spot Instance Scheduler only considers re-
active placement decisions based on current instance type prices in
this paper.

2.4 Migration across Availability Zones and Providers

Each availability zone has its own Spot Market, hence the same
type of Spot Instance may be charged differently in different zones
at the same time. Our techniques make it possible to migrate
sVMs to another availability zone, or even to a different cloud
provider. But data transfer across availability zones costs $0.02/GB
($0.01/GB for both ingress and egress traffic), and across providers
is even more expensive. When live migrating sVMs, we need to mi-
grate the memory and the dirty pages generated during the migra-
tion time, so migrating even a single sVM across availability zones
incurs significant cost—at least several cents—close to the price
of a regular On-Demand Instance and usually much more than the
price of a Spot Instance.

While the migration cost is a one-time cost, and migrating to
a cheaper availability zone might eventually be worth the invest-
ment of migration, we cannot easily predict that the availability
zone will continue being cheap. In order to make migration across
availability zones beneficial in terms of cost, the best way is to re-
duce the data transfer during the migration. A lot of techniques can
be used, such as memory de-duplication and self-ballooning. How-
ever, for this paper, the Smart Spot Instance Scheduler will only
migrate sVMs within the same availability zone.

2.5 Reliability Requirements

Amazon reserves the right to terminate Spot Instances at any time.
Although Smart Spot Instances can improve reliability compared
to normal Spot Instances, their reliability is still not as good as
that of regular instances. One possible solution is to replicate sVMs
in different availability zones. However, for some applications the
networking cost of synchronizing replicas could be high. A com-
promise between cost and reliability is to run replicas in different
types of fVMs within the same availability zone, as networking cost
would be free. Different fVM types have different (price) markets,
so would be less likely to be terminated at the same time.

3. Scheduling Smart Spot Instances

We designed and implemented a centralized scheduler to select the
types of fVMs and place sVMs on them. The scheduler maintains
the current placement of sVMs in the Supercloud. It monitors the
Spot price and decides the types of fVMs and placement of sVMs
when fVMs approach the end of their instance hour. Specifically,
the scheduler determines the best combination of fVM types, allo-
cates new fVMs if need be, deploys the Supercloud library environ-
ment on the newly started fVMs, clears fVMs to be terminated by

migrating its sVMs to other fVMs, and terminates the former fVMs
after migration finishes. We consider only one type of sVMs, that
is, sVMs all have the same number of vCPUs, memory size, net-
work bandwidth, and disk access speed.

Should the scheduler becomes a bottleneck, we could partition
the resources and use multiple schedulers at reduced optimality.

3.1 Scheduler

The margin time (Section 2.3), denoted as tM , is used to allocate
new instances and migrating the sVMs before the expiration of the
current instance hour. The margin time is configurable and can be
tuned based on VM size and available bandwidth between the two
fVMs. Since the start times of the fVMs are not synchronized,
we divide each hour into slots that have a length equal to the
margin time and run the scheduler at the beginning of each slot.
The scheduler then considers the overall placement of sVMs on
all the fVMs that are going to finish their instance hour during the
current slot and use the current slot to finish migration.

The scheduler obtains the capacity and price of regular and
Spot fVM types, the collection of fVMs that are finishing within
the margin time (finishing fVMs), and the current sVMs on them
(number and sizes). The goal of the placement algorithm is to find
the most cost-effective way to place the sVMs on the finishing
fVMs. The scheduler could either continue to work with the current
set of finishing fVMs or allocate new fVM instance types while
allowing some (or all) finishing fVMs to terminate. The scheduler
migrates all the sVMs away before terminating the fVMs.

Specifically, let n be the number of finishing fVMs, and let m be
the number of sVMs running on them. The scheduler determines
the set of fVMs to be used in the next instance hour. However,
since we cannot predict future prices, the algorithm can only do
local optimization with all information available at the time of
invocation. The local optimization goal is to minimize the total cost
C for running the m sVMs in the next instance hour.

The calculation of cost C for any algorithm needs to consider
the cost of keeping a finishing fVM and keeping all of the sVMs
associated with it (No Migration) versus terminating a fVM and
migrating associated sVMs to a new fVM (Migration). See Figure 2
for an illustration of this scheduling decision. In particular, suppose
we want to terminate a finishing fVM and migrate all sVMs on
it to another fVM with price pnew (Migration case in Figure 2).
The cost of running these sVMs in the next instance hour will be
pnew (i.e. the cost of the new fVM, which will host the sVMs).
However, suppose we keep the finishing fVM (No Migration case
in Figure 2). We assume its price for the next instance hour would
be the same as the observed price at the beginning of the margin
time when the scheduler was invoked, we call this price pcurr. The
cost of the next instance hour will be reduced by the margin time
tM since it was already paid for during the previous instance hour.
Thus, the cost of the next instance hour will be pcurr(1− tM/60)
(i.e. the price of the finishing fVM multiplied by the next instance
hour minus the margin time divided by an hour). As a result, the
scheduler uses pnew versus pcurr(1− tM/60) to decide whether or
not to allocate new fVMs and migrate their associated sVMs.

In the following subsections, we describe two scheduling algo-
rithms: Greedy and dynamic programming, in Sections 3.2 and 3.3,
respectively. The latter achieves a local optimal placement and cost.

3.2 Greedy Algorithm

The greedy algorithm works as follows. For the m sVMs on finish-
ing fVMs, consider all fVM types, one type at a time, and for each
fVM type, compute the total cost to run all m sVMs. Then, select
the fVM type with the minimum cost.

tM

current instance hour next hour for

local optimization

pnew

pcurr(1 – tM/60)

fVM1

fVM1

fVM2

time

No Migration

Migration

time of invoke

Figure 2. Timeline of Scheduling Decisions

For an fVM type j with price p j and capacity2 c j , the cost of
running all m sVMs is p j⌈m/c j⌉ where ⌈m/c j⌉ is the number of
fVM instances necessary to hold m sVMs. If the fVM type is the
current type of fVM, we use the price p j(1− tM/60) as described
in Section 3.1. The greedy algorithm selects the fVM type with the
minimum cost.

There are two advantages for the greedy algorithm. First, it is
simple. Only one fVM type is used during a scheduling slot, which
simplifies the algorithm. Second, if m is a multiple of the capacity
c j for fVM type j that the greedy algorithm selects, the placement
returned by the greedy algorithm would be optimal. Otherwise, the
resources for m mod c j sVMs will be wasted. If m is large, m
mod c j will be a small fraction of m and thus the greedy algorithm
approximates the optimal solution.

3.3 Dynamic Programming Algorithm

In this section, we use a dynamic programming algorithm to find
the optimal placement for the m sVMs. Dynamic programming
algorithms solve problems that exhibit the property of optimal
substructure.

We first consider a simpler problem that placing m sVMs onto
k different fVM instance types to achieve the minimum cost and
do not consider the overlapping margin time cost. We want to get
the solution of the problem from the cheapest placement of x sVMs,
with x ranging from 0 to m−1. Note that the problem of minimizing
the cost of placing x sVMs can be solved by examining the cost of
placing d sVMs into a single fVM with instance type j and the
sum of the minimum cost of placing x−d sVMs, for all possible js
and ds. So the problem can be solved using the following dynamic
programming equation, with f (x) representing the minimum cost
to run x sVMs.

f (x) = argmin
0≤ j<k, 0<d≤c j

(f (x−d)+ p j)

In this equation, c j stands for the capacity of the jth fVM type,
and p j is its current price. We treat the On-Demand Instance as a
special kind of Spot Instance whose price remains unchanged.

We compute f (x) with x ranging from 0 to m. f (0) = 0 because
it is free to run 0 sVMs. f (m) will be the minimum cost to run the
m sVMs on the finishing fVMs. The choice of the fVM types can
be determined by storing the choice js and ds that minimizes f (x)
with x ranging from 0 to m.

In order to incorporate the margin time overhead, we need
to modify the original dynamic programming algorithm. If the
scheduler chooses to keep the finishing fVMs for another hour, the
start time will be tM minutes later. Now our price function f takes
two parameters, x and i. i indicates that the function has considered

2 Capacity c j would correspond to the most constrained resource for an fVM
of type j; e.g. minimum between CPUs, memory and network bandwidth,
relative to the resources required by an sVM.

the first i finishing fVMs, which can either be chosen to continue
or terminate, determined by the cost of either case. Solving f (x, i)
consists of two subproblems. The first subproblem is placing d
sVMs into a single instance of type j and getting the minimum
cost of running x − d sVMs with first i finishing VMs already
considered, for all possible js and ds. The second subproblem is
keeping the ith finishing VM and adding up the cost of using the ith

VMs to run d sVMs and the minimum cost of running x−d sVMs,
for all possible ds.

The dynamic programming equation contains two argmins,
which solve the two subproblems respectively, as follows:

f (x, i) = min(argmin
0≤ j<k, 0<d≤c j

(f (x−d, i)+ p j),

argmin
0<d≤ctype[i]

(f (x−d, i−1)+ ptype[i](1− tM/60)))

type[i] is used to represent the type index of the ith finishing
fVM. The minimum cost to run the m sVMs on n finishing fVMs
will be f (m,n), which can be computed from f (0, i), i ∈ {0,1, ..,n}
with f (0, i) = 0.

The complexity of the running time is O(m ·n · k · c), where c is
the largest capacity of all fVMs. k will be small, since there are only
a few instance types. c is also small because even the largest fVM
can hold a few sVMs. When scheduling less than tens of thousands
of VMs, this procedure can be reasonably fast. Although it is not as
scalable as the greedy algorithm, it is likely to achieve lower cost.

3.4 Greedy VM Replication Algorithm

Section 2.5 described how Supercloud users can use sVMs as
replicas and ask the scheduler to place the replicas into separate
fVM types to improve availability (we assume that fVM types
fail and terminate instances differently since they follow different
markets). In particular, the greedy VM replication algorithm works
the same as the greedy algorithm described in Section 3.2, except
that it is invoked with all replica groups of the same size with the
constraint that it has to use as many different fVM types as the
replica group size. In particular, if a replica group size is r, instead
of choosing the cheapest fVM type, the greedy VM replication
algorithm will choose the r cheapest fVM types. Finally, it is
invoked separately for replica groups of different sizes.

4. Evaluation

The goal of the evaluation is to see if using user-level migration in
leveraging the Spot Market leads to substantial price savings while
maintaining availability. We evaluate both the dynamic program-
ming and the greedy scheduling algorithms and compare them with
other approaches. In order to have more control and reproducibil-
ity we first use simulation to evaluate the algorithms, and then run
some experiments using TPC-W on a Supercloud deployment.

4.1 Comparison of Approaches

We used simulation to compare different algorithms for scheduling
Smart Spot Instances. The cost savings depended on the price
history. For our experiments, we used two 10-day price history
traces obtained from Amazon. The margin time tM was set to
5 minutes in all our evaluations. We compared three classes of
scheduling strategies:
• Dynamic: our dynamic programming (DP) and greedy (GR)

algorithms dynamically place and migrate sVMs;
• Static Spot: this strategy sticks with the initial placement of the

sVMs.The initial placement can either be chosen from a single
Spot Instance type, or the best placement on a combination
of Spot Instance types, according to the Spot prices at the
beginning of the period (called Combo).

• Static Regular: this strategy uses a single type of regular On-
Demand Instance throughout.

The first ten-day price history starts at 0:00am 3/25/2015 UTC
in Amazon’s us-west-2a availability zone. Spot Instance types
were chosen from c3.large, c3.xlarge and c3.2xlarge which
have 2, 4 and 8 vCPUs resp. The memory sizes were 3.75, 7.5 and
15GB resp. The sVMs had a size of 1vCPU and 1GB memory.
We left 1vCPU and 3GB memory for the second layer Dom0 and
OpenStack VM, so the maximum number of sVMs that can be
hosted on the different types of Spot Instances were 1, 3, and 7 resp.
Although a t2.micro instance provides 1vCPU and 1GB memory,
the CPU frequency, disk IOPS, and network bandwidth are much
lower than for a c3 instance, so we do not compare with running
the application directly on t2.micro instances.

Figure 3a and 3b show the cost of running 10 and 100 sVMs
during this period. Dynamic placement achieved more than 2x
cost savings compared to other placement strategies. With only 10
sVMs, the greedy algorithm ended up costing about 16% more than
dynamic programming, but with 100 sVMs, the cost is less than
10%. The Combo strategy cannot protect against price changes in
the Spot Market, and did only moderately better than sticking to a
single Spot Instance type, and in fact could perform worse if the
initial placement ends up costing more in the long run than some
instance type. The dynamic approaches ended up being approxi-
mately 4x cheaper than placing the sVMs onto regular On-Demand
Instances.

We also used a price history from the us-east-1b availability
zone starting at 0:00am 4/1/2015 UTC. Instead of c3 instances,
we used m3.large, m3.xlarge and m3.2xlarge, which have the
same number of vCPUs but twice the memory compared to c3

instances. They also host 1, 3, and 7 sVMs resp. with a size of
1vCPU and 3GB memory. Compared to the previous price history,
the Spot Market prices were significantly more stable. In particular,
the price of m3.2xlarge stayed low during the entire period.

Figure 3c and 3d show that running sVMs in Spot Instances
were at least 5x cheaper than regular instances, even without mi-
gration. Migration achieved moderate cost savings compared to
Combo or any of the single instance types.

4.2 VM Replication

We used simulation to evaluate the cost of a 2-replication group us-
ing the previous two price histories with 100 sVMs, for a total of
200 sVMs, and used the greedy algorithm to solve the replication
constraints. Figure 4 shows the results. Because we replicate VMs
to achieve better availability in the face of Spot Instance termina-
tion, we did not replicate to regular instances.

The greedy algorithm achieved lower cost than all possible pairs
of instances types to hold the replicas. Even in the case when the
prices were relatively stable, the algorithm achieved more than 15%
savings compared to the best static choice of instance types.

4.3 TPC-W Benchmark

We evaluated the dynamic programming algorithm using the TPC-
W web benchmark. 10 sVMs ran as 10 different TPC-W servers.
Each server served requests from different sets of TPC-W clients.
The TPC-W clients were hosted by m3.large instances, each
of which hosted two client sets and joined the Supercloud VPN
to access the TPC-W servers using private IP addresses. Since
migration in the Supercloud does not change the server’s private
IP address, we did not need to reconfigure clients after migration.
The setup and history were the same as the second price history
shown in Section 4.1, except that we only ran the experiment for
the first day.

Figure 5a shows the accumulative prices of running all 10 TPC-
W servers as sVMs with different placement schemes. The Smart

 0
 50

 100
 150
 200
 250
 300
 350

D
P

G
R

C
om

bo

c3.2xlarge

c3.xlarge

c3.large

R
egular

C
o
s
t
($

)

Dynamic Static
Spot

Static
Regular

migration no migration

(a) 10 sVMs in us-west-2a

 0

 500

 1000

 1500

 2000

 2500

D
P

G
R

C
om

bo

c3.2xlarge

c3.xlarge

c3.large

R
egular

C
o
s
t
($

)

Dynamic Static
Spot

Static
Regular

migration no migration

(b) 100 sVMs in us-west-2a

 0
 50

 100
 150
 200
 250
 300
 350

D
P

G
R

C
om

bo

m
3.2xlarge

m
3.xlarge

m
3.large

R
egular

C
o
s
t
($

)

Dynamic Static
Spot

Static
Regular

migration no migration

(c) 10 sVMs in us-east-1b

 0

 500

 1000

 1500

 2000

 2500

D
P

G
R

C
om

bo

m
3.2xlarge

m
3.xlarge

m
3.large

R
egular

C
o
s
t
($

)

Dynamic Static
Spot

Static
Regular

migration no migration

(d) 100 sVMs in us-east-1b

Figure 3. Cost Savings in Simulation Experiments.

Spot Instance using the DP algorithm triggered migrations six times
(denoted as the dashed lines) during the experiment and maintained
the lowest cost over the entire experiment. In contrast, the static
deployments, either on single instance types or combining multiple
types, suffered from price spikes. These spikes typically lasted one
to two hours. Figure 5b shows that the performance of the Smart
Spot Instance remained high throughout the experiment.

5. Discussion

The evaluation in Section 4 is based on experiments with the Ama-
zon Spot Market, but we believe the Supercloud and Smart Spot
Instances can also be used with Google Preemptable Instances to
improve availability and save cost. Below we discuss how Google
Preemptable Instances differ from Amazon Spot Instances and the
required changes for the Smart Sport Instance scheduler to work
with Google Preemptable Instances.

Google Preemptable Instances differ from Amazon Spot In-
stances in several ways.

• Prices of Preemptable Instances are fixed–in particular, prices
do not change based on time or location;

• The maximum length of a Preemptable Instance is 24 hours–
after 24 hours, an instance is terminated;

• the grace period before a Preemptable Instance is preempted
(terminated) is only 30 seconds.

To adapt to the specifics of Google Preemptable Instances, the
Smart Spot Instance scheduler will have to be changed in the
following ways.

• Because of the fixed price of Google Preemptable Instances, the
scheduler does not need to monitor the price and migrate sVMs
accordingly. However, the scheduler would still use either the

Dynamic Programming or Greedy algorithm to place sVMs
onto the fVMs during scheduling decisions;

• The period of placement decisions increases to once every 24
hours. The scheduler still needs to keep track of the running
time of each fVM. When the running time of the fVM ap-
proaches 24 hours, the scheduler needs to compute a new place-
ment of the sVMs on the fVM.

• Due to the 30 second preemption (termination) grace period,
Smart Spot Instances can only support fairly small fVM in-
stances that can be live migrated within 30 seconds. (For future
work, we are investigating containers which can be migration
much faster.)

The Supercloud can also span different cloud providers and is
able to schedule sVMs across Google and Amazon at the same
time. When choosing fVM providers and instance types, the sched-
uler can treat Google Preemptable Instances as different types of
instances with fixed prices. The scheduler would need to consider
that migration cost between providers is even more expensive than
migration between availability zones, as discussed in Section 2.4.
The scheduler also needs to adapt to the different cloud APIs.

6. Related Work

VM live migration has been widely used for resource consolidation
and workload burst handling (Wood et al. 2007). However, existing
techniques mainly focus on reducing the number of physical hosts
being used. Smart Spot Instances need to additionally consider
unique challenges that stem from monetary costs in the cloud and
the pricing model and dynamic market of the Amazon Spot Market.

There have been studies on better utilizing Amazon Spot In-
stances to increase performance and lower cost. (Chohan et al.
2010) propose a Markov-based job scheduler for MapReduce ap-
plications that adds Spot Instances as accelerators when the envi-

 0

 500

 1000

 1500

 2000

G
R

XL+2XL

XL+L

L+2XL

R
egular

C
o
s
t
($

)

(a) us-west-2a

 0

 500

 1000

 1500

 2000

 2500

G
R

XL+2XL

XL+L

L+2XL

R
egular

C
o
s
t
($

)

(b) us-east-1b

Figure 4. Cost of Replicating 100 sVMs. m3.large, m3.xlarge and m3.2xlarge are denoted as L, XL, and 2XL.

 0

 1

 2

 3

 4

 5

 6

 7

 8

00 02 04 06 08 10 12 14 16 18 20 22 00

A
c
c
u

m
u

la
ti
v
e

 C
o

s
t

($
)

Time (Hours in UTC)

DP
m3.large
m3.xlarge
m3.2xlarge
Combo

(a) Cost

 80

 120

 160

00 02 04 06 08 10 12 14 16 18 20 22 00

A
g

g
r.

 W
IP

S

Time (Hours in UTC)

(b) Performance

Figure 5. Cost and performance of Smart Spot Instances. Migra-
tions in DP are indicated as vertical dashed lines.

ronment (i.e., the Spot Instance price) is favorable. (Yi et al. 2010)
study the mechanisms and tools that deal with the cost-reliability
trade-offs in the Spot market. (Mazzucco and Dumas 2011) analyze
the strategies required to achieve high-availability based on price
prediction and a cost-reward model. Studies show that HPC ap-
plications can also benefit from Spot Instances (Taifi 2013). Com-
pared to these works, a major advantage of Smart Spot Instances is
the ability to migrate running applications. Thus, applications are
not locked in to any particular Spot Instance, and it is much eas-
ier for users to exploit price differences. SpotCheck (Sharma et al.
2015) used checkpointing and migration to improve reliability of
spot instances while Smart Spot Instances focus on reducing cost.

A Cloud Service Brokerage acts as a front-end for multiple
cloud providers assisting users with selecting the right cloud or
clouds for running their applications (Barker et al. 2015). The Su-
percloud can be thought of as such a brokerage. To the best of our
knowledge, the Supercloud is the only brokerage with specific sup-
port for managing VMs in a Spot Market.

7. Conclusion

This paper described some initial investigation of scheduling a
group of virtual machines in the Amazon EC2 Spot market, lever-
aging live user-level VM migration to overcome the inability to
predict future prices. Much work still needs to be considered. Cur-
rently, we require that all VMs are the same size and have not yet
investigated the effect on storage and networking. We also hope to

find use cases where multiple cloud providers can be exploited for
further price savings.

Availability

The Supercloud project website is located at
http://supercloud.cs.cornell.edu, and the code is publicly available.

Acknowledgments

The authors are supported in part by AFOSR grants FA2386-
12-1-3008, F9550-06-0019, by the AFOSR MURI Science of
Cyber Security: Modeling, Composition, and Measurement as
AFOSR grant FA9550-11-1-0137, by NSF grants CNS-1601879,
0430161, 0964409, 1040689, 1047540, 1053757, 1151268,
1422544, 1518779, 1561209, and CCF-0424422 (TRUST), by
ONR grants N00014-01-1-0968 and N00014-09-1-0652, by NIST
grant 60NANB15D327, by DARPA grants FA8750-10-2-0238,
FA8750-11-2-0256, and D11AP00266, by MDCN/iAd grant
54083, and by grants from Microsoft Corporation, Infosys, Google,
Facebook Inc., and Amazon.com.

References

A. Barker, B. Varghese, and L. Thai. Cloud services brokerage: A survey
and research roadmap. In Cloud Computing (CLOUD), 2015 IEEE 8th

International Conference on, pages 1029–1032. IEEE, 2015.

N. Chohan, C. Castillo, M. Spreitzer, M. Steinder, A. Tantawi, and
C. Krintz. See Spot Run: Using spot instances for MapReduce work-
flows. In HotCloud’10, pages 7–7, Berkeley, CA, USA, 2010. USENIX
Association.

Q. Jia, Z. Shen, W. Song, R. van Renesse, and H. Weatherspoon. Super-
cloud: Opportunities and challenges. SIGOPS Oper. Syst. Rev., 49(1):
137–141, Jan. 2015. ISSN 0163-5980.

M. Mazzucco and M. Dumas. Achieving performance and availability guar-
antees with spot instances. In HPCC 2011, pages 296–303, Washington,
DC, USA, 2011. IEEE Computer Society. ISBN 978-0-7695-4538-7.

P. Sharma, S. Lee, T. Guo, D. Irwin, and P. Shenoy. Spotcheck: Designing
a derivative IaaS cloud on the spot market. EuroSys ’15, pages 16:1–
16:15, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3238-5.

M. Taifi. Banking on decoupling: Budget-driven sustainability for HPC
applications on auction-based clouds. SIGOPS Oper. Syst. Rev., 47(2):
41–50, July 2013. ISSN 0163-5980.

T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. Black-box and gray-
box strategies for virtual machine migration. In NSDI’07, pages 17–17,
Berkeley, CA, USA, 2007. USENIX Association.

S. Yi, D. Kondo, and A. Andrzejak. Reducing costs of spot instances via
checkpointing in the Amazon Elastic Compute Cloud. In IEEE CLOUD

2010, pages 236–243, Washington, DC, USA, 2010. IEEE Computer
Society. ISBN 978-0-7695-4130-3.

	Introduction
	Challenges and Opportunities
	Price Trends in Different Types of Spot Instance
	Multiple Resource Allocation
	Different Instance Hour Start Times
	Migration across Availability Zones and Providers
	Reliability Requirements

	Scheduling Smart Spot Instances
	Scheduler
	Greedy Algorithm
	Dynamic Programming Algorithm
	Greedy VM Replication Algorithm

	Evaluation
	Comparison of Approaches
	VM Replication
	TPC-W Benchmark

	Discussion
	Related Work
	Conclusion

