
Accelerating Batch Analytics with Residual
Resources from Interactive Clouds

R. Benjamin Clay∗, Zhiming Shen∗, Xiaosong Ma∗†
∗ Dept. of Computer Science, North Carolina State University

† Computer Science and Mathematics Division, Oak Ridge National Laboratory
{rbclay,zshen5}@ncsu.edu, ma@csc.ncsu.edu

Abstract—The popularity of cloud-based interactive comput-
ing services (e.g., virtual desktops) brings new management
challenges. Each interactive user leaves abundant but fluctuating
residual resources while being intolerant to latency, precluding
the use of aggressive VM consolidation. In this paper, we
present the Resource Harvester for Interactive Clouds (RHIC),
an autonomous management framework that harnesses dynamic
residual resources aggressively without slowing the harvested
interactive services. RHIC builds ad-hoc clusters for running
throughput-oriented “background” workloads using a hybrid of
residual and dedicated resources. These hybrid clusters offer
significant gains over normal dedicated clusters: 20-40% cost
and 20-29% energy savings in our testbed. For a given back-
ground job, RHIC intelligently discovers and maintains the ideal
cluster size and composition, to meet user-specified goals such
as cost/energy minimization or deadlines. RHIC employs black-
box workload performance modeling, requiring only system-
level metrics and incorporating techniques to improve modeling
accuracy with bursty and heterogeneous residual resources.
We demonstrate the effectiveness and adaptivity of our RHIC
prototype with two parallel data analytics frameworks, Hadoop
and HBase. Our results show that RHIC finds near-ideal cluster
sizes and compositions across a wide range of workload/goal
combinations.

Keywords—Distributed computing; Performance analysis;
Adaptive systems;

I. INTRODUCTION

Interactive cloud offerings are expanding, providing vir-
tual computing laboratories, remote desktop environments and
online collaboration tools. For example, North Carolina State
University’s Virtual Computing Laboratory (VCL) [1] is a
production cloud system hosting virtual desktops for more
than 13,000 students at NCSU and other nearby schools.
These new platforms bring individual users easy access to
popular applications/tools with low management overhead.
They also yield significant residual, or unused, resources, due
to overprovisioning and the bursty, unpredictable nature of
interactive workloads.

By aggressively harnessing such residual resources, cloud
providers can benefit from higher cloud utilization as well as
considerable energy savings, as the incremental energy cost of
running additional applications using residual CPU is low [2].
However, traditional techniques such as virtual machine (VM)
packing [3] cannot be performed aggressively here, due to
users’ bursty resource consumption patterns combined with
response time requirements. Conservative workload consoli-
dation, on the other hand, will likely leave significant amounts
of residual resources idle, as we show in §III-A.

Harvesting residual resources in this context requires a
well-designed infrastructure that considers performance, cost-
effectiveness and system reliability. In particular, using in-
teractive nodes alone for background jobs will suffer from
performance and stability issues. Prior studies [4], [5], [6] have
proposed a hybrid batch cluster design where volunteer (har-
vesting) nodes supplement a core set of stable dedicated nodes,
in some cases using EC2 SPOT instances in the volunteer role.
As shown in Fig. 1, a set of transient interactive nodes are
“padded” with volunteer VMs running a background batch job,
which consume residual resources while automatically defer-
ring to the interactive user via hypervisor prioritization. This
co-location of interactive and batch workloads is advantageous
due to orthogonal temporal characteristics (as we show later),
and has been described previously [2], [7]. In our preliminary
experiments (§III-B), we demonstrate 20-29% energy and 20-
40% cost gains over normal dedicated clusters with only 1%
average slowdown of interactive workloads.

We propose an I/O asymmetric design for the background
cluster, where only the dedicated nodes provide persistent
storage. The volunteer VMs use their local storage for tempo-
rary data only, while the foreground VMs are hosted entirely
from local storage, as shown in Fig. 3. This accounts for
interactive users’ bursty resource consumption, which easily
leads to high migration cosst, as shared nothing clouds such
as VCL lack robust shared storage (like Amazon’s Elastic
Block Store). This choice allows volunteers to be lightweight
and agile, by avoiding data-loss and expensive replication as
volunteers join and leave: volunteers are only sent data which
they will immediately process, and are not relied upon to host
data in the long-term. For example, in contrast to passive
volunteer MapReduce computing environments described by
prior work [6], interactive nodes are much shorter-lived and
unlikely to return in the near future. Also, the hybrid cluster
design provides a performance baseline to mitigate stragglers,
caused by bursty and unreliable volunteers, via speculative
execution of delayed volunteer tasks on dedicated nodes.

In this setting, the cloud administrator is faced with the
following question: Given an arbitrary batch job, and limited
knowledge about the interactive workloads, what hybrid clus-
ter size and composition will give the best performance for the
cost? This problem can be formulated as a dynamic, virtualized
cluster-sizing problem, which brings new challenges not stud-
ied in prior work. Unlike in traditional cluster-sizing scenarios,
the highly-dynamic nature of this environment introduces
substantial complications when modeling performance, deter-
mining an ideal cluster size, and selecting cluster composition.

2013 IEEE 21st International Symposium on Modelling, Analysis & Simulation of Computer and Telecommunication Systems

1526-7539/13 $26.00 © 2013 IEEE

DOI 10.1109/MASCOTS.2013.63

414

50%

80%

40%

65%50%

30%40%

60%
Interactive Nodes

Dedicated Nodes

Interactive Utilization

Fig. 1: Sample hybrid cloud computing system,
with 8 interactive nodes running interactive ser-
vices. A background job runs on 2 dedicated
and 4 volunteer nodes.

Cost ($) Watt Hrs
Workload Min Max Min Max
Wordcount 4.42 6.38 1273 1957
Grep 2.40 5.83 710 894
Pi 9.25 16.63 2963 5461
Co-oc. 7.72 11.41 2230 3987

Fig. 2: Cost and energy ranges
for batch workloads on a hybrid
cluster, with 6 dedicated nodes
and 0-36 volunteers.

���
���
���
���
���
���

Foreground
VM

Volunteer
VM

��
��
��
��

Local Disk
���
���
���
���

Local Disk

Temp
Low

data
priority

All
High

data
priority

Interactive Node

Dedicated
VM

Dedicated Node

Input
output

and
data

Fig. 3: Disk layout in the hybrid
cluster design. The hypervisor is
used to prioritize foreground disk
access.

For example, Fig. 2 shows the diverse range of monetary costs
and energy consumption among different batch workloads.
These results are highly dependent on the specific batch inputs,
foreground workloads and pricing structure chosen, as well as
cluster hardware, network and energy characteristics.

Existing work has addressed several related problems,
including MapReduce cluster sizing [8], [9], [10], [11], vol-
unteerism/hybrid clusters for MapReduce [4], [5], [6] and
workload consolidation [3]. However, these prior studies were
not designed to consider the unique challenges in harvesting
residual resources from interactive users, particularly (1) the
high degree of temporal and spatial transience in residual
resources, and (2) the dedicated node I/O saturation constraint
in our target asymmetric architecture.

In this paper, we present Resource Harvester for Interac-
tive Clouds (RHIC), a generic management framework which
autonomically optimizes a hybrid cluster running within resid-
ual resources. RHIC provides intelligent cluster sizing for a
wide range of throughput-oriented parallel batch workloads.
To accomplish this, RHIC combines profiling with black-
box performance modeling to make resizing decisions in an
iterative, online fashion. We profile the CPU, memory and I/O
consumption of each workload and build self-tuning models
to translate these system-level metrics into job performance
estimates. Finally, we tailor this approach to the hybrid
cluster design, by predicting residual resource availability at
the volunteers and directly managing I/O saturation at the
dedicated nodes. Our multi-faceted approach handles dynamic
and unpredictable behavior from a wide range of sources,
aggregating unstable resources into a reliable batch platform.
Through extensive evaluation, we show that RHIC delivers
accurate performance estimates and quickly discovers the best
cluster size for novel workloads. Our major contributions:

• To the best of our knowledge, we are the first to propose
batch cluster sizing as a tool for resource harvesting in
interactive clouds, with the goal of making the background
job itself energy and cost efficient.

• We present an adaptive cluster sizing solution that uses a
combination of online profiling and performance modeling to
quickly discover and maintain efficient hybrid cluster sizes.

• We develop black-box job performance models which map
aggregate residual resources to performance. RHIC only
relies on system monitoring data and a progress score from
the background job, which allows generalization to a wide
range of throughput-oriented workloads.

• We carried out an evaluation of over 400 runs on a hybrid

cluster of 42 nodes, using real traces collected from pro-
duction interactive clouds and representative batch analytics
workloads. Our results show that RHIC achieves high ac-
curacy across 28 workload/goal combinations in minimiz-
ing cost/energy (5%/3% error as compared to exhaustive
surveys), and enforcing deadlines (2% under on average).
In addition, we demonstrate RHIC’s performance against
alternative algorithms, tolerance for increased instability and
hardware heterogeneity, and low overhead.

II. RELATED WORK

Our work is related to contributions from several other areas:

Volunteer computing. Volunteer computing (VC), known
widely through projects such as Condor [12] and BOINC [13],
has a long history as both a computation paradigm and a
method of harvesting wasted cycles. While passive VC has
traditionally formed the bulk of interest in this research area,
advancing multitasking technology has made it feasible and at-
tractive to perform active volunteer computing [2], [14], where
the user and harvester coexist temporally. Active and passive
VC are similar in spirit, with active VC posing additional
challenges in maintaining interactive user experience [14] and
delivering consistent background performance using unreliable
residual resources [15].

The focus of this work is related to the second challenge
mentioned above: how bursty residual resources can efficiently
provide a stable batch execution platform that meets perfor-
mance and/or cost goals. RHIC’s novelty is in modeling the
relationship between batch workload progress and resource
availability, with techniques to mitigate burstiness, heterogene-
ity and other artifacts of our hostile environment. While both
passive and active VC are important prerequisites to RHIC,
our design and claims are orthogonal.

Cluster sizing for parallel batch workloads. Several recent
works perform cluster sizing for parallel batch workloads [8],
[9], [10], [11], [16]. Of these, our efforts are most-closely
related to those which combine modeling with online adjust-
ment and feedback [8], [10], [11]. Jockey [8] is a system
for meeting deadlines in MapReduce clusters using offline
profiling/simulation, coupled with an online control loop which
can adapt to cluster availability. Conductor [11] also combines
modeling and online adjustment to meet deadlines and mini-
mize cost for MapReduce, taking into account data upload and
migration overheads. RAS [10] is a MapReduce scheduler that
profiles the resource requirements of Map/Reduce tasks and
then attempts to allocate sufficient slots for each running job

415

to meet soft deadlines. Starfish [9] is a system for optimizing
cluster size for arbitrary MapReduce workloads and hardware,
using a combination of workload profiling and and configura-
tion parameter modeling. Yu et al. [16] describe a system for
modeling batch workload performance and allocating masters
and workers to avoid resource waste.

Compared to the aforementioned efforts, RHIC addresses
a unique permutation of traditional cluster sizing for parallel
batch workloads. We consider several sub-problems which are
specific to our harvesting theme, including foreground demand
prediction, heuristic node selection, I/O saturation awareness,
I/O curve discovery and heterogeneity-tolerant performance
modeling. In summary, the differences between RHIC and
the aforementioned MapReduce cluster-sizing efforts are as
follows: (1) the uniquely unstable environment in which we
operate, (2) our support for novel, short-lived jobs, and (3)
the general applicability of our modeling approach to a broad
class of parallel batch workloads.

Because we rely on the foreground user for dynamic resid-
ual CPU and static residual memory availability, each volunteer
node offers a varying contribution to the job’s completion time.
As a result, node or task-level performance modeling [8], [9],
[10], [11], [16] will not adequately capture the performance of
a given cluster. Our insight regarding aggregate residual CPU
availability and its direct effect on cluster performance (§IV-D)
led to RHIC’s CPU-centric modeling approach. Further, hybrid
clusters have significant I/O restrictions because dedicated
nodes provide the only persistent storage. We take a unique
approach to discovering and modeling I/O bottlenecks (§IV-C)
in response. Wieder et al. [11] do consider data staging and
migration costs in their performance model, but do not account
for the effects of disk contention and I/O load imbalance on
whole-cluster performance. Yu et al. [16] consider data transfer
time and cluster balance, but not I/O saturation at master nodes
or imbalanced demand from heterogeneous workers.

RHIC can optimize novel and short-lived jobs (which are
common [8], [17], [18]) with no a priori knowledge, using
a combination of online profiling and adaptive scaling. All
prior efforts require either previous executions of the target
job [8], [9], [10], [16] or key performance characteristics [11].
While those with online adjustment [8], [10], [11] could adapt
to some deviation from the profile performance (as Wieder
et al. [11] demonstrate), the dynamic nature of volunteer
heterogeneity directly inspired RHIC’s online learning and
reactive approaches to CPU (§IV-C) and I/O (§IV-D).

Finally, RHIC offers a highly-generic performance mod-
eling interface, which only requires a job progress score and
average task length. The models employed by prior works have
various levels of dependency on the workload, from MapRe-
duce as a concept [10], [11] to specific MR frameworks [8],
[9]. Because we envision RHIC as a harvesting platform which
manages throughput-oriented parallel batch jobs, we built it to
be workload-independent and evaluate this capability (§V-D).
Further, because volunteers are lightweight and transient, we
believe RHIC could be applied to multi-stage jobs [8] by
managing each stage independently.

Hybrid MapReduce, Volunteerism and Cluster Sharing.
Prior works use Amazon EC2 Spot Instances to perform
MapReduce jobs [4], [5], [19], whose transience is similar

to interactive cloud nodes. Two approaches have been taken
to handle SPOT instance instability: (1) using SPOT instances
to supplement a core set of dedicated, non-SPOT nodes [4],
[5], and (2) using Amazon’s cloud storage service to preserve
intermediate results [19]. Our approach is most-similar to the
former, in that robust aggregated storage is unavailable in our
environment and a hybrid cluster design is necessary to provide
stability. Both of these works [4], [5] elect to host data only
on core nodes, but do not consider the performance impact
of I/O in such an offloading scenario. Although Lee et al. [5]
highlight a similar problem space to our work, they have not
proposed any concrete solution for automatically determining
ideal cluster size.

MOON [6] enhanced Hadoop to operate under passive
volunteerism, where a foreground workload and MapReduce
are interleaved temporally but not spatially. Mesos [18] is a
framework for batch framework co-location above a shared
distributed filesystem. Both works are orthogonal to ours:
they do not consider our target scenario, with two workloads
asymmetrically sharing resources, or perform cluster sizing.

Workload Consolidation. Co-locating workloads on the
same physical host is a well-established technique [3] that
is complementary to our approach. RHIC can transparently
harvest whatever residual resources are available after consol-
idation, with the expectation that the user will leave some free
during periods of “think time”.

III. BACKGROUND

As mentioned earlier, we leverage a hybrid cluster de-
sign [4], [5], [6] to harvest residual resources. In §III-A,
we justify our cluster design choice by showing that it is
appropriate for our environment. Then, in §III-B we validate
assumptions regarding the feasibility and profitability of adopt-
ing this approach.

A. Hybrid Cluster Design Rationale

Our hybrid design is motivated by an analysis of interactive
cloud workloads observed in the VCL: 600 real user traces
(described in §V-A) and reservation metrics from 750,000
sessions during 2004-2010. We found that user reservations are
both fairly long and have very high variances (CoV = 1.04)
indicating unpredictable session lengths. Further, average CPU
utilization is low (3-22% on average) and bursts are quite
short-lived (2-47s on average), even for computate-intensive
workloads like Matlab. Further analysis of these traces is given
in our tech report [20].

Such highly dynamic behavior renders traditional ap-
proaches such as workload consolidation [3] less appealing.
Conservative consolidation can maintain interactive users’ QoS
requirements but will inevitably waste resources. Aggressive
approaches, on the other hand, may face severe performance
penalties in the case of resource conflicts. Although live
migration is possible both with shared and non-shared storage,
the short CPU bursts and highly variable session durations seen
in interactive workloads will require frequent migration and
may lead to heavy thrashing.

In the hybrid cluster design, the dedicated nodes have node-
local storage capacity, while the volunteer VMs only use their
local storage for temporary data, as shown in Fig. 3. This

416

Fig. 4: Energy and cost
savings by using a hybrid
cluster design, over a regu-
lar dedicated-only cluster.
Error bars represent the
range of savings.

Fig. 5: Slowdown of interactive fore-
ground workloads padded with volunteers.
Foreground workloads include members of
bltk and AT&T’s R benchmark. Back-
ground workloads include several resource-
intensive benchmarks: Word Cooccurrence
(Cooc), Iozone, and NAS PB (EP, CG).

Fig. 6: Disk and network bandwidth utilization
on 2 dedicated nodes, with and without 8
volunteers. Disk utilization is measured by the
% of time the CPU spent blocked on I/O.

design keeps volunteer nodes lightweight and agile, making it
much easier to use/discard a node due to foreground demand
shifts. Further, through mechanisms such as task replication
and reliable dedicated nodes, this hybrid design can aggres-
sively harvest residual resources while mitigating stragglers.

B. Validating Key Assumptions

Here we validate three key assumptions used in our design:

1. Savings over dedicated clusters. To verify the en-
ergy/cost benefits of the proposed hybrid cluster approach,
we experimented with 2 dedicated nodes and 2-8 volunteers,
priced/metered as discussed in §V-A. Fig. 4 shows sample
monetary and energy savings when running Hadoop workloads
on a hybrid cluster, as compared to using a regular Hadoop
cluster with the same number of nodes (dedicated + volun-
teers). The hybrid cluster design delivers significant savings:
20-29% energy and 20-40% cost.

2. Foreground users can be isolated from volunteers. Mod-
ern hypervisors have been shown to offer effective performance
isolation [21], partially demonstrated by today’s high VDI den-
sities [22]. We verified this by testing co-located foreground
and background VMs under work-conserving schedulers in
the Xen and KVM hypervisors, with the foreground given the
maximum CPU, disk and network priority, and the background
VM minimum. We ran our most resource-intensive background
workload (Word Cooccurrence) on three hypervisors, as well
as I/O and CPU benchmarks on the latest version of KVM.
Fig. 5 indicates that the performance impact is low despite vir-
tual desktop applications’ sensitivity to I/O latency. Xen yields
an average slowdown of 1%, while KVM 1.2 delivers < 6%
slowdown with all combinations except R paired with CG, due
to CG’s high memory bandwidth demand. To our knowledge,
no hypervisor currently arbitrates memory bandwidth.

3. Dedicated nodes have sufficient residual disk bandwidth
to offload computation to volunteers. Figure 6 plots the
disk and network utilization (collected with the iostat and
dstat tools respectively) of 2 dedicated nodes, with and
without 8 volunteers, for the two most I/O-intensive workloads
in our MapReduce test set. It illustrates that (1) substantial disk
and network bandwidth is available on dedicated nodes, (2)
using volunteers significantly speeds up the job execution, and

�������	

��������	
���
���

�����

����	
���

��

��������

���	�������
���

������������

��	�	�����
�	�	������
����
�������
�	�
�	��

��	�	�����
�	�	������������������	��

�� ��	����
��

���
�
���
	���	��RHIC

!
�������������
�

����	�

���
������
�	�
�	��

��"�

��������

�
���

#���	����

�����������

$	���

���	�	
�

#���	���������

����
������

����

%
���

&���
�������

%
���	��

Fig. 7: RHIC components and data flow

(3) disk bandwidth consumption is significantly higher than
that of network, and therefore more bottleneck-prone. This
reinforces our choice to (1) accelerate a dedicated cluster
with volunteers and (2) identify the appropriate number of
volunteers for a given dedicated cluster.

IV. FRAMEWORK DESIGN

A. Overview

RHIC combines online profiling with periodic job progress
and system resource monitoring to adaptively scale the volun-
teer node set throughout a background (batch) job’s execution.
Fig. 7 shows RHIC’s major components (and their interac-
tions), which collaborate to periodically re-evaluate cluster
sizing decisions. RHIC starts a batch job execution with a
profiling phase, defaulted to 1 minute, where the dedicated
nodes run alone. This allows us to seed our I/O model by
viewing the background job running without I/O pressure
generated by the diskless volunteers, and gather background
job characteristics such as memory requirements.

Throughout the rest of the job execution, RHIC continues
to monitor system status, such as interactive node resource
usage, dedicated node I/O saturation level and job progress.
With the initial profiling and the continuous monitoring, re-
spectively, RHIC automatically observes and adapts to both
the background job’s behavior and changes in the foreground
workload. The background job’s execution is partitioned into
evaluation intervals, defaulted to 1 minute in length. At
the beginning of each interval, a search algorithm generates

417

candidate volunteer counts to be evaluated. For each volunteer
set size, interactive nodes are selected to meet this quota by the
node selection component (§IV-B). Their predicted resource
availability is supplied as input to the I/O model, generated
by the I/O modeling component (§IV-C), which determines
whether a given set of volunteers will incur dedicated-side disk
bottlenecks. Finally, completion time and goal performance
is predicted for the cluster by the performance modeling
component (§IV-D). The best candidate volunteer pool is used
until the end of the interval, when the process repeats. With our
moderate testbed (6 dedicated and 36 interactive nodes), RHIC
can exhaustively evaluate all possible volunteer counts (0-36)
in 250ms. However, for scalability, we have also implemented
an alternative search module using simulated annealing which
typically finds near-optimum cluster sizes within 3-4 periods.

Throughout this section, we make reference to a synthetic
metric which we call productivity, which represents a volun-
teers’ ability to perform work on behalf of the background
workload. Productivity is measured in units of CPU utilization
(%), but through the modeling process is adjusted to account
for foreground CPU demand and memory restrictions, as well
as I/O bandwidth restrictions. We explain how this metric is
formulated in §IV-B and §IV-C, and how RHIC uses it to model
workload performance in §IV-D.

To handle the dynamic set of interactive nodes, each con-
tributing varying amount of resources, and to achieve online
performance modeling independent of the actual workload
and batch execution framework, RHIC relies on three key
insights derived from our experiments. These insights help us
to simplify our performance model, identify chief performance
constraints, and focus on the behavior of aggregate resources
from volunteers:

• Insight 1: Although each foreground interactive workload
has unpredictable resource usage bursts, its average usage
in the near future tends to be more stable.

• Insight 2: In our proposed hybrid execution mode, the disk
I/O bandwidth afforded by the dedicated nodes can be a
major factor limiting the effective productivity of a volunteer.

• Insight 3: The overall progress of a batch job is determined
by the aggregate productivity from all selected volunteers,
largely independent of the productivity distribution among
these nodes.

In the rest of this section, we discuss in detail the above
insights and the interaction between several major RHIC
components. Note that for simplicity, our discussion is based
on homogeneous hardware across the node pool. However, in
our tech report [20], we describe and evaluate a thin translation
layer that allows RHIC manage and model different physical
node types with very low error (≤ 2%).

B. Volunteer Selection and Management

Given a desired aggregate volunteer set size, RHIC must
select which specific interactive nodes to use in an efficient
and scalable manner. This selection is based on continuous
residual resource monitoring and prediction, as discussed be-
low. Common interactive cloud workloads are highly bursty,
making load consolidation [3] backed by VM migration diffi-
cult. However, for running background jobs that yield to the
interactive foreground tasks, it is the sustained CPU resource

availability that matters. Fortunately, we found that although
individual CPU usage spikes appear random and unpredictable,
the average near-future CPU utilization can be effectively
estimated using short-term history data (Insight 1).

Residual resource prediction: RHIC employs an online
foreground workload CPU demand model using once-a-second
CPU consumption samples from the interactive nodes. We
considered several common prediction methods under a range
of history / prediction window lengths simulating our envi-
ronment, and evaluated them on the foreground traces we use
(§V-A), with extended details given in our tech report [20].
On the basis of this evaluation, we selected moving average as
our prediction algorithm and we maintain a prediction model
for each interactive node regardless of whether it is currently
selected as a volunteer.

For memory, we assume that the foreground VMs have
pre-specified memory caps based on their workload, as in the
case of Amazon EC2 and VCL instances. Background memory
requirements, on the other hand, are estimated during the initial
profiling phase. For MapReduce-like platforms, we adjust the
number of simultaneous worker processes (such as Map slots
NSlots) on each volunteer to fit within its residual memory
capacity. If this kind of performance knob is unavailable, we
discard any nodes that lack the minimum memory required.

Put together, the predicted foreground CPU consumption
(CPUfg) and memory restrictions (100% × NSlots) indicate
the volume of unused residual resources available for volunteer
consumption on an interactive node. In effect, whichever of
these two factors is most-restrictive dictates what CPU will be
available for the volunteer’s workload. We call this quantity
potential productivity Ppotential (Eq. 1), and distinguish this
quantity as potential because I/O bottlenecks may result in
a lower actual productivity, as we discuss in §IV-C. Here
CPUmax represents the maximum CPU available on the
interactive node, such as 400% for four cores.

Ppotential = min(CPUmax − CPUfg, (100% ×NSlots)) (1)

Note that we do not consider time-of-day in our predic-
tions, as idle cloud sessions are likely to be terminated by
either the user or the system for cost/energy savings, as does
the VCL. There will likely be daily or weekly interactive pool
size fluctuations, which can be handled by RHIC as a global
constraint when selecting volunteer cluster sizes for multiple
concurrently running background workloads.

Node selection: In selecting specific volunteers from the
interactive node pool, we adopt a greedy algorithm for better
scalability. Candidate nodes are sorted according to their poten-
tial productivity level. Then RHIC makes volunteer selections
by evaluating different prefix sets of the candidate list toward
a given optimization goal, using the I/O-aware performance
model discussed in §IV-D. If the current volunteer set is no
longer optimal, adjustment is made by including nodes with
the highest or discarding nodes with the lowest predicted CPU
contribution. Intuitively, this approach reduces the number
of volunteers used and limits the search to a linear rather
than exponential space, in regard to the candidate interactive
node pool size. Interactive node churn presents an issue for
our search-driven cluster sizing scheme, because nodes can
arrive/leave unexpectedly, i.e. at the end of a class lab session.
To avoid this, RHIC takes a deferment strategy: upon an
interactive pool change, it enforces the decision made at the

418

end of the last evaluation interval, deferring new decisions to
the end of the current interval.

In our shared-nothing cluster, we disable migration because
it is costly and ill-suited (§III-A). However, if foreground
migration is enabled, RHIC can seamlessly adapt to the post-
migration volunteer with its constant monitoring, periodic
volunteer pool assessment and node selection.

C. Modeling Workload I/O Behavior

As verified in §III-B, our proposed method is based on
the observation that, for typical distributed batch workloads,
there is available I/O/network bandwidth for dedicated nodes
to support additional volatile, diskless volunteer nodes. This
model applies to background workloads with non-trivial com-
pute demand, but this category is fairly broad - we find
that significant cost/energy gains can be achieved for Grep,
which is substantially I/O-intensive. However, eventually I/O
bandwidth on dedicated nodes is likely to become the chief
limiting factor for scalability (Insight 2), which has not been
considered in prior work [4], [5].

Fig. 8 illustrates the interaction between the volunteer pro-
ductivity and the I/O contention at the dedicated nodes for two
sample MapReduce workloads. It shows the aggregate actual
productivity from the volunteers at each level of aggregate
potential productivity, averaged over the Map phase. The actual
productivity is measured from the volunteer VM usage, while
the potential is calculated with Eq. 1. We verified that the
leveling off point in these curves corresponds to the dedicated
node I/O saturation point. This figure also demonstrates that
the onset of the I/O saturation is highly workload-dependent:
with a more I/O-intensive workload (SFASTA in this case), the
saturation comes earlier and results in a lower aggregate actual
productivity. Fig. 8b plots the actual to potential productivity
ratio, showing that the MapReduce job consumes a constantly
declining portion of the aggregate potential productivity. As a
result, we base our I/O model on {Ppotential, Pactual} pairs
for the given workload and hardware, derived at runtime.

Saturation Point Estimation: For each background job,
RHIC builds an I/O curve that tracks potential productivity on
the X-axis and actual productivity on the Y-axis, in order to
ultimately predict the actual productivity for a given volunteer
set. RHIC uses data from the initial profiling, as well as
continuous sampling, and applies regression to build this I/O
curve. It is critical to estimate the I/O saturation point, beyond
which more volunteers will not yield additional performance,
to avoid extrapolation and needlessly over-subscribing the
dedicated nodes’ I/O subsystems. RHIC bases its saturation
point estimate on I/O bandwidth consumption data collected
in the initial profiling phase. Assuming a linear relationship
between actual productivity and I/O demands (limitations
discussed below in §IV-E), it estimates the excess volunteer
productivity each dedicated node can support using Eq. 2.
Here BWUtilavg is the average disk bandwidth utilization
measured on the dedicated nodes during the initial profiling
phase, and Pmax is the maximum potential productivity on a
node. V ol P supp is the volunteer productivity each dedicated
node could support, in addition to its own demand.

V ol P supp = (
100%

BWUtilAvg
− 1) × Pmax (2)

Next, we calculate the range of potential I/O saturation on-
set points, using best and worst-case estimates. The best-case

estimate represents completely-balanced I/O load (each dedi-
cated node serving equal volunteer demand) and the worst-case
completely-imbalanced (one dedicated node serving all volun-
teer demand). Below we derive the pair of estimates based
on V ol P supp, where Nd is the number of dedicated nodes:

Sbest = V ol P supp ×Nd (3) Sworst = V ol P supp (4)

Using the best and worst case estimates, RHIC intelligently
increases the size of the volunteer pool using the following
approach (algorithm given in our tech report [20]): it samples
the worst case estimate, halfway between the best and worst
case, and then uses linear regression to guess the actual
saturation onset point. RHIC then verifies the occurrence of
I/O saturation using the disk sensors on the dedicated nodes.
In practice, we have found that this approach quickly finds the
I/O saturation point with satisfactory accuracy. In addition, this
allows us to sample system metrics under a range of cluster
sizes, improving the breadth of our models.

Improving I/O Balance: To increase the chance that I/O
load is balanced across dedicated nodes, therefore yielding a
saturation point closer to Sbest, RHIC can leverage background
framework-specific cues to assign volunteers to dedicated
nodes in a round-robin fashion. In Hadoop, topology locality
cues are used to assign subsets of volunteers to the same
logical rack as dedicated nodes, increasing the probability
(but not guaranteeing) that mid-job, I/O demand is balanced
across dedicated nodes. Since Hadoop allows for arbitrary rack
hierarchy depths, this technique can be used to incorporate real
topology data as well.

I/O Curve Building with Clustering and Curve-fitting:
Next, we complete the I/O curve that maps aggregate po-
tential volunteer productivity to aggregate actual volunteer
productivity. RHIC uses a combination of clustering and spline
fitting to deliver interpolated values tightly constrained to the
observed curve, which is important near the saturation point,
because minimization decisions hinge on marginal cost/gains.
Prediction of the aggregate actual productivity on a given
set of volunteers can then be performed with interpolation,
based on the projected aggregate potential productivity on
these volunteers. This approach assumes that the network
bandwidth is either static or is not a limiting factor, which we
believe is reasonable (RDP sessions consume only 384Kbps
on average [22]) but will be relaxed in future work, to incor-
porate hotspot detection, topology awareness and bandwidth
availability prediction.

D. Background Job Performance Modeling

Background job performance modeling is the core of
RHIC’s sizing intelligence. As mentioned earlier, RHIC’s
performance modeling is based on the observation that the
aggregate productivity from the selected volunteers, largely
independent of the distribution of residual resources on indi-
vidual volunteer nodes, is the chief factor determining a job’s
completion time on a hybrid cluster (Insight 3 - limitations
discussed below in §IV-E). Fig. 9 shows this performance
behavior. In these tests, we collected the execution time of
four MapReduce workloads under four different CPU alloca-
tion distributions among the volunteers, simulating different
productivity distributions. According to each distribution, a
volunteer is allocated 4 cores with a CPU cap between 50%-

419

(a) Actual (b) Relative

Fig. 8: Impact of I/O bottlenecks on productivity,
using 2 dedicated and 1-8 volunteers.

(a) Volunteer resource distributions (b) Job completion times

Fig. 9: Impact of residual resource distribution on job completion time for
a hybrid cluster. All distributions have the same total residual CPU.

350% (with one core = 100%), while the total CPU allocations
for all 8 volunteers are fixed at 1600%.

Fig. 9b shows that the duration of the Map phase is
nearly constant across all distribution types, for all MapReduce
workloads tested. In other words, frameworks like Hadoop are
quite tolerant to heterogeneity in node processing capabilities,
possibly due to the adoption of mechanisms such as speculative
execution with the well-proven LATE algorithm [23]. In partic-
ular, the fact that dedicated nodes are robust, stable and 100%
available results in aggressive, reliable speculative execution,
effectively taking over the job from straggler volunteers. This
observation allows us to build our performance modeling
on the collective behavior of the dynamic interactive nodes.
Rather than micro-managing volunteer nodes according to their
foreground resource usage bursts, RHIC bases its decision on
the aggregate potential productivity from candidate volunteer
node sets, filtered through the I/O model. Although Fig. 9 only
demonstrates static CPU allocation heterogeneity, we show in
our evaluation that this technique can be successfully applied
to dynamic heterogeneity.

Completion Time Estimation and Damping: More specif-
ically, RHIC predicts that “a background job will complete at
time y if it receives a sustained total volunteer productivity of
x”. This simplification is aided by both RHIC’s preference for
most-productive volunteers (§IV-B) and speculative execution.
For this, we developed a simple model based on the processing
rate Rproc, shown in Eq. 5. Here Jcompleted is the current
fraction of the job completed, Telapsed is the time elapsed,
and APact is the aggregate actual productivity (dedicated +
volunteer) over Telapsed. Rproc is re-evaluated periodically
during the background job.

Rproc =
Jcompleted

AP act × Telapsed
(5) Trem =

Jrem

AP pred ×Rproc
(6)

By calculating the fraction of remaining work Jrem =
Jtotal − Jcompleted, we can then invert Eq. 5 and produce a
completion time estimate Trem, given a predicted aggregate
actual productivity APpred, as shown in Eq. 6. APpred is
calculated by applying RHIC’s I/O model to the volunteers’
predicted aggregate potential productivity, which together es-
timates the aggregate productivity that is sustainable by the
dedicated I/O infrastructure. Finally, we add a small padding
value to our runtime estimate to improve straggler toler-
ance and incorporate transition times by profiling volunteer
launches/shutdowns. Overall, in our experimentation we found
this runtime modeling approach simple but effective.

Goal Estimation: Based on the completion time estimate,

RHIC generates performance scores (to be minimized) for
candidate volunteer sets, given a goal:

(1) Deadlines: To satisfy a deadline requirement, RHIC
computes the performance score as the difference between the
estimated job completion time and the deadline.

(2) Monetary cost: Given a certain pricing policy, RHIC
calculates the performance score as the overall cost based on
the completion time estimate.

(3) Energy: Energy estimation is more complex and
requires the offline construction of a hardware-specific energy
model. In this paper, we take the well-established approach
of running a micro-benchmark to enumerate the relationship
between CPU utilization, frequency and power consumption,
and then apply multiple regression to derive a power model.
This model is subsequently used by RHIC to compute the
performance score as the predicted power consumption with
the given volunteer set, over the length of the job. While
all power consumption on dedicated nodes is billed to the
background user, he/she is only charged for the incremental
energy consumption incurred by the background job on the
volunteer nodes, because these nodes would be powered on
anyway to host interactive users.

E. Limitations of Linearity Assumptions

The aforementioned performance modeling is dependent on
Rproc (Eq.5) remaining somewhat static over the lifetime of
the job. While our scheme tolerates noise in Rproc calculation
resulting from uneven job progress reporting (shown in §V-C),
workloads that have inherently heterogeneous progress can
reduce RHIC’s accuracy. We believe that this shortcoming can
be addressed with offline profiling, which would allow us to
distill how much Rproc varies in the given workload.

F. Integrating RHIC into MapReduce

RHIC uses a generic modeling approach and can manage
a wide class of embarassingly-parallel batch frameworks. At
present, MapReduce (MR) is easily the most-popular paradigm
within this workload class, and below we discuss several issues
specific to using RHIC with MapReduce background jobs.

Multi-tenancy: MR clusters are traditionally multi-tenant
with several jobs vying for available slots. Because RHIC
tightly couples cluster size and the performance characteristics
of a single job, we believe greater performance can be gained
by running multiple RHIC-guided hybrid clusters, side-by-side
within the same cloud. With this proposed execution model,
each job would be anchored on a set of dedicated nodes and
managed by an independent instance of RHIC. Each copy of

420

RHIC harvests from a shared pool of interactive nodes, which
are traded between jobs as demand changes.

Volunteer termination: The lifetime of a volunteer is equal
to the lifetime of the interactive node which it resides on, and
abrupt termination poses a problem for Hadoop because the
JobTracker assumes that tasks completed by the terminated
node are lost. Several fixes for this issue have been proposed,
including checkpoint-restart, pre-emptively pushing intermedi-
ate data to Reducers or placing it on a distributed filesystem.
We emulate these features using a modified scheduler.

Reducer placement: The loss of Reduce tasks is particularly
damaging to MR job runtimes because intermediate data must
be re-shuffled [4]. As a result, we do not run Reducers on
volunteers and focus on the runtime of the Map phase, which
for our workloads dominates the total execution time. This is
backed by findings [24] that Map-only jobs are common, the
Map phase dominates MapReduce jobs, and input data is the
majority of stored bytes.

V. EXPERIMENTAL EVALUATION

In this section we evaluate RHIC after giving an overview
of our test platform in §V-A. First, in §V-B, we establish
that RHIC can accurately discover near-ideal cluster sizes. In
§V-C, we compare the performance, stability, and adaptability
of RHIC to an alternative algorithm based on fuzzy control
theory. Finally, we outline additional evaluations in §V-D.

A. Test Workloads, Platform, and Settings

Background Workloads: For evaluating RHIC we use
Hadoop with four representative workloads: Wordcount (70GB
of input), Grep (70GB of input), Word Co-occurrence (11GB
of input), and Pi (trivial input). Map phase execution times are
typically 20-40 minutes.

Foreground Workloads: NCSU’s VCL is an excellent model
of an interactive-user IaaS cloud, and we drew on it for ideas
about “typical” clouds of this nature. To determine what were
the most popular applications used in the VCL, we analyzed
a log of 750,000 reservations from 2004-2010 and selected
four representative workloads: Matlab, Photoshop, OpenOffice,
and C Development. We then instrumented images of these
types and collected over 600 resource consumption traces of
real users, ranging in length from 20 minutes to 4 hours.
Finally, we built a replay framework that can generate CPU and
memory load using the stress microbenchmark to match
the consumption in a recorded trace. We use different random-
ized foreground “mixes” for each group of experiments. The
length and churn rate of the foreground VM sessions, along
with static memory allocations, are generated using normal
distributions with the parameters derived from VCL log data.

Test Platform: Our main test platform is NCSU’s ARC
cluster, which has 108 nodes interconnected via InfiniBand,
each with 16 2GHz cores on two processors, 32GB RAM, a
SATA disk and the KVM hypervisor. We use IP over Infiniband
for our experiments, but due to virtualization overhead can
only achieve approximately 500 MBit/sec speeds (VM to VM).
ARC has a high of ratio of compute to I/O resources, which
makes this environment more challenging for RHIC: a more-
robust I/O subsystem would yield greater scalability and less-
flat cost and energy curves (§V-B). We chose to use ARC

because it has both reasonable size and node-attached power
meters. To calculate background power consumption we replay
the foreground workload by itself and calculate the difference.
We adopt a monetary pricing policy following the costs of EC2
m2.xlarge On-Demand and SPOT Instances at the time of
writing: $1.00/hour for dedicated nodes and $0.42/hour for
volunteers, calculated to the nearest second.

Evaluation: Unless otherwise noted, we run each test three
times and report the average, with the goal of evaluating
RHIC under a wide range of scenarios. To this end, we have
conducted over 400 non-simulated experiments, each with over
600 worker processes, and in general found the variance to be
quite small. Error bars denoting standard deviation are omitted
unless we have at least 5 runs for a given test and μ ≥ 2%.

B. Exhaustive Evaluation

Fig. 10: RHIC vs exhaustive:
Deadline enforcement. Values just
under 1.0 are ideal, but above 1.0
are missed deadlines.

First, we performed
an exhaustive evaluation
over the volunteer clus-
ter size range, for each
MapReduce test work-
load. We then ran RHIC
under identical condi-
tions to verify its ability
to quickly find the ideal
cluster size. Our hybrid
cluster is composed of 6
dedicated nodes and 0-36
volunteers, with over 600
worker processes. We collected exhaustive datapoints every 2
volunteers, from {0, 2, . . . , 36}, and repeated each test twice.
For a fair comparison, we ensured that every run (exhaustive or
RHIC) had an identical foreground workload “mix” composed
of the same traces starting the same points in time. This mix is
composed of a randomized selection of traces and start points
taken in equal proportion from each of the four foreground
workloads described in §V-A (25% each). This seeded mix
allowed us to collect foreground-only energy consumption
and subtract it from the total, calculating the background
energy curves shown in Fig. 12. To generate the exhaustive
performance survey, we developed a “targeted” version of our
framework which maintains a specific number of volunteers
using the same volunteer node selection mechanism (§IV-B) as
RHIC. This ensures that if RHIC and the targeted framework
choose X interactive nodes at the same point in the background
job, they receive the same set.

Fig. 11 and 12 show the performance of RHIC relative
to the exhaustive search for cost and energy minimization,
respectively. It can be clearly seen that (1) supplementing
dedicated nodes with volunteers does bring monetary cost
and energy benefits, (2) different volunteer cluster sizes yield
a large range in execution costs, generating 72% monetary
savings and 47% in energy comparing the most and least
optimal settings, (3) the behavior of the cost/energy curves are
highly workload-dependent, and (4) RHIC is able to identify
the optimal or near-optimal cluster size automatically. On
average, RHIC achieves within 5% of the minimimum cost and
3% of the minimum energy. The only notable anomaly is that
RHIC undershoots the energy minimum for Co-occurrence by
approximately 4 volunteers, because Co-occurrence has non-

421

Fig. 11: RHIC vs exhaustive: Cost minimization. Dedicated
nodes are fixed at Cd = $1.00/hr, with four different volunteer
rates: Cv = {$0.20, $0.42, $0.60, $0.80}/hr, represented as
Exh.(Cv) and RHIC(Cv). Volunteer count is the time-weighted
average over the job.

Fig. 12: RHIC vs exhaustive: Energy minimization. Volunteer
count is the time-weighted average over the job.

trivial I/O demand which RHIC cautiously explores, and a long
stragger phase during which most volunteers sit idle.

Fig. 10 shows soft deadline enforcement results. Three
deadlines were chosen for each background workload, across
the range of achievable completion times, each tested twice for
6 total datapoints per workload. In Fig. 10, the horizontal black
bar marks the normalized deadline (@1.0). The exhaustive bar
represents the closest setting, identified by the exhaustive tests,
which achieves the deadline. Again, RHIC achieves near-ideal
performance in most cases, enforcing runtimes 2% under the
deadline on average. It misses 5 of 24 deadlines, but by less
than 3% on average.

C. Optimization Technique Evaluation

Conceptually, RHIC is based on the combination of online
profiling and model-guided optimization. Given the highly-
volatile nature of our harvesting environment and the need
for continual adjustment, a control theory approach could be
a valid alternative. In this section, we compare RHIC with an
alternative scheme based on fuzzy control for minimization, as
well as a naı̈ve threshold algorithm. Traditional control systems
are well-suited for problems where the goal is clearly defined
(i.e. deadlines) but struggle when it is not (i.e. minimization).
To address both cases, we turn to fuzzy control systems. Fuzzy
control has been previously applied to minimization problems

in server clusters by Liu et al. [25], which we use as the basis
for our FUZZY controller design (full design details in our
tech report [20]). Its 2-period historical comparison is similar
to hill-climbing.

When FUZZY believes it is moving in the “correct”
direction (Liu’s rules #1,3), we increment/decrement clus-
ter size by a parameter Fuzzy(p>1), otherwise increment-
ing/decrementing by a single volunteer when the minimum
is nearby (rules #2,4). In addition, we included a naı̈ve
“threshold” algorithm, which chooses interactive nodes with
residual resource availability above a percentage - i.e., Thresh-
old(0.5) selects all volunteers with ≥ 50% predicted available
resources. We evaluated the two alternative methods plus
RHIC with all three goal criteria across our four background
workloads, again using a hybrid cluster of 6 dedicated and 0-
36 volunteers. One deadline was chosen for each background
workload, in the middle of its achievable completion time
range. For FUZZY we varied p = {2, 4, 8}, while for Thresh-
old we used thresholds of 25%, 50% and 75%, but 75% is
omitted due to its universally poor performance.

From Fig. 13, we see that alternative schemes yield worse
cost and energy minimization performance relative to RHIC,
and RHIC enforces deadlines much more tightly. While some
alternative schemes deliver near-RHIC minimization results
(< 5% additional cost/energy) for some workloads, none
consistently do so across all background workloads and goals.
For example, Fuzzy(8) performs well on a subset of workload
/ goal combinations, but delivers inconsistent and poor results
elsewhere. RHIC’s adaptability to both the workload and the
desired performance goal clearly offers a broad advantage. The
only place where RHIC underperforms any of the alternative
schemes (by 2% at most) is in energy minimization for Word
Co-occurrence, for the same reason as discussed in §V-B.
Several insights about these results are worth mentioning:

FUZZY’s poor decision-making: this stems from two
root causes. First, Hadoop’s global progress indicator is not
smoothly linear, due to task reporting and I/O delays. RHIC
uses repeated sampling and averaging to address this issue.
Second, FUZZY does not account for changes in the fore-
ground CPU demand, which is also very noisy. We opted
against adding this capability to FUZZY, under the reasoning
that it would simply shift the unreliability issue elsewhere.

Threshold is goal-oblivious: this yields arbitrary perfor-
mance, solely dependent on cost, energy and runtime curves
(as seen in Fig. 11). While this algorithm is much simpler
in implementation than RHIC, it is inflexible and will suffer
greatly from unfriendly performance landscapes.

Alternate schemes finish far before deadlines: runtimes
which are much earlier than the deadline allocate too many
volunteers and thus waste resources which could be used
for other background jobs. RHIC tightly hugs the deadline
whenever possible to avoid wasting residual resources.

D. Extended Evaluation

Here we give a brief overview of additional experiments,
with detailed descriptions given in our tech report [20]:

Overhead: RHIC’s control node consumes less than 2% CPU
on average and takes less than 250ms to make an exhaustive

422

Fig. 13: Performance of alternative schemes to RHIC. For cost and energy, lower values are better, and 0% is RHIC’s performance.
For soft deadlines, values just below 1.0 are best, and values above 1.0 indicate missed deadlines.

cluster sizing decision for 36 volunteers.

Impact of Environment Stability: we increased the interac-
tive node churn rate to 2× and 8× normal and evaluated RHIC
against FUZZY. FUZZY delivered cost overruns of 25%-45%
relative to RHIC and inconsistent deadline performance.

Other Background Frameworks: we used RHIC to manage
a lightweight compute framework on top of HBase, exporting
only a progress score, and achieved near-minimum perfor-
mance for both I/O and compute-intensive workloads: 1%
average error for cost and 2% for energy.

Hardware Heterogeneity: we built a thin translation layer
to aid RHIC in managing heterogeneous hardware, based
on capturing Rproc and I/O bandwidth equivalency metrics
between different node classes, which yielded ≤ 2% modeling
error for both I/O and compute-intensive workloads.

VI. CONCLUSION AND FUTURE WORK

In conclusion, we have outlined RHIC, an autonomic man-
agement framework for harvesting resources with throughput-
oriented parallel batch workloads. By combining black-box
modeling and online profiling, RHIC is able to quickly dis-
cover and maintain optimal cluster sizes across a range of
workloads and goals. With RHIC, we have found that it is
possible to tolerate the high degree of instability in interactive
clouds and run jobs with no a priori knowledge of either
the foreground or background workloads. Finally, RHIC re-
quires only system-level metrics and a progress score, yielding
broad applicability to an entire class of embarassingly-parallel
analytics workloads. Our work is only a first step towards
a full-featured harvesting batch platform. We are interested
in identifying ideal hybrid cluster compositions for a given
workload and performance goal, scaling both the dedicated
and volunteer nodes with topology awareness. Further, we plan
to extend our system to flexibly harvest more resource types,
including memory and network bandwidth.

ACKNOWLEDGEMENTS

We appreciate the helpful input from the anonymous
reviewers. This work has been supported in part by NSF
grants 0546301 (CAREER), 0915861, and 0958311, two IBM
Faculty Awards, a Graduate Merit Award from the College
of Engineering at NC State University, as well as a joint
faculty appointment between Oak Ridge National Laboratory
and NCSU. Any opinions expressed in this paper are those of
the authors and do not necessarily reflect the views of the NSF
or U.S. Government.

REFERENCES

[1] NCSU, “NCSU Virtual Computing Lab,” vcl.ncsu.edu/.
[2] J. Li, A. Deshpande, J. Srinivasan et al., “Energy and performance

impact of aggressive volunteer computing with multi-core computers,”
in MASCOTS ’09.

[3] T. Wood, P. Shenoy, A. Venkataramani et al., “Black-box and gray-box
strategies for virtual machine migration,” in NSDI ’07.

[4] N. Chohan, C. Castillo, M. Spreitzer et al., “See spot run: using spot
instances for mapreduce workflows,” in HotCloud’10.

[5] G. Lee, B.-G. Chun, and R. H. Katz, “Heterogeneity-aware resource
allocation and scheduling in the cloud,” in HotCloud’11.

[6] H. Lin, X. Ma, J. Archuleta et al., “Moon: Mapreduce on opportunistic
environments,” in HPDC ’10.

[7] B. Lin and P. Dinda, “Vsched: Mixing batch and interactive virtual
machines using periodic real-time scheduling,” in SC ’05.

[8] A. D. Ferguson, P. Bodik, S. Kandula et al., “Jockey: Guaranteed job
latency in data parallel clusters,” in EuroSys’12.

[9] H. Herodotou, F. Dong, and S. Babu, “No one (cluster) size fits all:
Automatic cluster sizing for data-intensive analytics,” in SOCC ’11.

[10] J. Polo, C. Castillo, D. Carrera et al., “Resource-aware adaptive schedul-
ing for mapreduce clusters,” in Middleware’11, 2011.

[11] A. Wieder, P. Bhatotia, A. Post et al., “Orchestrating the deployment
of computations in the cloud with conductor,” in NSDI ’12.

[12] M. Litzkow, M. Livny, and M. Mutka, “Condor-a hunter of idle
workstations,” in DCS ’88.

[13] D. Anderson, “Boinc: A system for public-resource computing and
storage,” in Grid ’04.

[14] A. Gupta, B. Lin, and P. Dinda, “Measuring and understanding user
comfort with resource borrowing,” in HPDC ’04.

[15] A. Chandra and J. Weissman, “Nebulas: Using distributed voluntary
resources to build clouds,” in HotCloud’09.

[16] L. Yu and D. Thain, “Resource management for elastic cloud work-
flows,” in CCGrid ’12.

[17] S. Agarwal, S. Kandula, N. Bruno et al., “Re-optimizing data-parallel
computing,” in NSDI ’12.

[18] B. Hindman, A. Konwinski, M. Zaharia et al., “Mesos: a platform for
fine-grained resource sharing in the data center,” in NSDI’11.

[19] H. Liu, “Cutting mapreduce cost with spot market,” in HotCloud’11.
[20] R. B. Clay, Z. Shen, and X. Ma, “Building and scaling virtual clusters

with residual resources from interactive clouds,” NCSU, Tech. Rep.
TR-2013-4 (Department of Computer Science).

[21] T. Deshane, Z. Shepherd, J. N. Matthews et al., “Quantitative compar-
ison of xen and kvm,” in Xen Summit ’08.

[22] Cisco, “Enterprise Virtual Desktop Infrastructure: Design for Per-
formance and Reliability,” http://cisco.com/en/US/solutions/collateral/ns340/
ns517/ns224/ns377/white paper c11-541004 R2 v7.pdf.

[23] M. Zaharia, A. Konwinski, A. D. Joseph et al., “Improving mapreduce
performance in heterogeneous environments,” in OSDI ’08.

[24] Y. Chen, S. Alspaugh, and R. H. Katz, “Design insights for mapreduce
from diverse production workloads,” UCB, Tech. Rep. EECS-2012-17.

[25] X. Liu, L. Sha, Y. Diao et al., “Online response time optimization of
apache web server,” in IWQoS’03.

423

